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We use the lubrication approximation to investigate the steady flow of a thin rivulet
of viscous fluid with prescribed volume flux draining down a planar or slowly varying
substrate that is either uniformly hotter or uniformly colder than the surrounding
atmosphere, when the surface tension of the fluid varies linearly with temperature.
Utilizing the (implicit) solution of the governing ordinary differential equation that
emerges, we undertake a comprehensive asymptotic and numerical analysis of the
flow. In particular it is shown that the variation in surface tension drives a transverse
flow that causes the fluid particles to spiral down the rivulet in helical vortices (which
are absent in the corresponding isothermal problem). We find that a single continuous
rivulet can run from the top to the bottom of a large horizontal circular cylinder
provided that the cylinder is either warmer or significantly cooler than the surrounding
atmosphere, but if it is only slightly cooler then a continuous rivulet is possible only
for a sufficiently small flux (though a rivulet with a discontinuity in the free surface
is possible for larger values of the flux). Moreover, near the top of the cylinder the
rivulet has finite depth but infinite width, whereas near the bottom of the cylinder it
has finite width and infinite depth if the cylinder is heated or slightly cooled, but has
infinite width and finite depth if the cylinder is significantly cooled.

1. Introduction
The gravity-driven draining of a rivulet of a viscous fluid down an inclined substrate

is a fundamental model problem for a number of practical situations, including a
variety of geophysical flows and industrial devices such as condensers and heat
exchangers, and has been the subject of considerable theoretical and experimental
interest both in its own right and as a prototype problem for a much wider class of
flows with contact lines.

The steady unidirectional flow of a uniform rivulet of Newtonian fluid down an
inclined plane was studied by Towell & Rothfeld (1966), who calculated the profile
of the rivulet numerically and found excellent agreement with their own experimental
results. More recently Alekseenko, Geshev & Kuibin (1997) extended Towell &
Rothfeld’s (1966) approach in a numerical study of the flow of a uniform rivulet
along the underside of an inclined cylinder.

Allen & Biggin (1974) and Duffy & Moffatt (1995) used the lubrication approxi-
mation to obtain an analytical solution for the flow of a uniform rivulet down an
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inclined plane in the case when the cross-sectional profile of the rivulet transverse
to the direction of flow is slender. In particular, Duffy & Moffatt (1995) calculated
the profile of the rivulet as a function of the angle of inclination of the plane to
the horizontal and used this locally unidirectional solution to investigate the flow
of a non-uniform rivulet down a slowly varying substrate, specifically flow in the
azimuthal direction round a large horizontal cylinder. Kuibin (1996) studied the flow
of a thin uniform rivulet along the underside of an inclined cylinder. Wilson & Duffy
(1998) studied the flow of a non-uniform rivulet down a slowly varying substrate
with variation transverse to the direction of flow, specifically flow in the azimuthal
direction round a large horizontal cylinder with a ridge or trough in the azimuthal
direction. Rosenblat (1983) investigated the flow of a uniform rivulet of viscoelastic
fluid down an inclined plane and found that one effect of the elasticity is to drive
a transverse flow (absent in the Newtonian case) which causes the fluid particles to
spiral down the rivulet in two counter-rotating helical vortices.

Various aspects of the stability of rivulet flow have been investigated by, for
example, Davis (1980), Weiland & Davis (1981), Young & Davis (1987), Schmuki &
Laso (1990), and Wilson & Duffy (1998).

Taking a slightly different approach Smith (1973) obtained a similarity solution
of the thin-film equations describing the steady gravity-driven draining of a slender
non-uniform rivulet from a point source on an inclined plane in the absence of
surface-tension effects. In particular, Smith’s (1973) solution predicts that the width
of the rivulet increases according to the 3/7th power of the distance measured down
the plane from the source, and is in excellent agreement with his own experimental
results. Subsequently Duffy & Moffatt (1997) obtained the corresponding solution
when surface-tension effects are dominant (as they are, for example, when the plane
is vertical) and found that Smith’s (1973) exponent is modified to a 3/13th power.
Both of these similarity solutions predict a varying contact angle at the contact line;
Wilson, Duffy & Davis (2001) showed how they can be modified to accommodate
a fixed-contact-angle condition at the contact line if sufficiently strong slip at the
solid/fluid interface is incorporated into the model.

There has also been considerable work on the closely related problem of the
formation and stability of a dry patch in a thin film draining under gravity down
an inclined plane (see, for example, Hartley & Murgatroyd 1964; Ponter et al. 1967;
Wilson 1974; Podgorski, Flesselles & Limat 1999; and Wilson et al. 2001).

All of the work on rivulets described thus far has concentrated on the simplest case
of isothermal flow. However, in many practical and industrial contexts heating or
cooling effects are not negligible, and so there is considerable interest in investigating
the flow of non-isothermal rivulets. The pioneering work on non-isothermal thin-film
flow was performed by Burelbach, Bankoff & Davis (1988) who formulated and
analysed the general evolution equation for a two-dimensional thin film of fluid on
a uniformly heated or cooled horizontal plane, including the effects of mass loss or
gain, vapour recoil, thermocapillarity, surface tension, gravity and long-range inter-
molecular attraction. Ehrhard & Davis (1991) used a special case of this equation (and
the corresponding equation for axisymmetric flow) to study the non-isothermal quasi-
static spreading of both two-dimensional and axisymmetric droplets on a uniformly
heated or cooled horizontal plane subject to thermocapillary effects. In the absence
of exact solutions of the relevant governing equations for the profiles of the droplets
their analytical (as opposed to numerical) analysis of the non-isothermal problem was
largely restricted to the case of weak thermocapillary effects. Subsequently Ehrhard
(1993) conducted a series of experiments on both isothermal and non-isothermal
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spreading, and found good agreement with the theoretical predictions of Ehrhard
& Davis (1991). Also of relevance to the present work are other studies of non-
isothermal thin-film flows with thermocapillary effects, notably the following papers:
Tan, Bankoff & Davis (1990) and Burelbach, Bankoff & Davis (1990) on the steady
thermocapillary-driven flow on a non-uniformly heated horizontal plane; Reisfeld &
Bankoff (1992) on the flow round a heated or cooled horizontal cylinder; Jensen &
Grotberg (1993) on the surface-tension-gradient-driven spreading of heat or soluble
surfactant along a thin film; Anderson & Davis (1995) on the spreading of a volatile
droplet on a heated horizontal plane; Braun et al. (1995) on the spreading of a
reacting droplet on a heated horizontal plane; Smith (1995) on the thermocapillary-
driven motion of a droplet on a non-uniformly heated horizontal plane; Joo, Davis
& Bankoff (1996) on the mechanism for rivulet formation in a thin film draining
down a heated inclined plane; López, Bankoff & Miksis (1996) on the advancing
contact line at the leading edge of a film draining down a heated inclined plane; and
Kataoka & Troian (1997, 1998) on the advancing contact line at the leading edge of
a thermocapillary-driven film on a non-uniformly heated vertical plane. The review
article by Oron, Davis & Bankoff (1997) gives an excellent overview of recent work on
both isothermal and non-isothermal thin-film flows. There has also been considerable
work on the onset of thermocapillary-driven (Marangoni) convection in fluid layers.
Davis (1987) reviews the early work in this area.

In this paper we shall employ the approach adopted by Duffy & Moffatt (1995)
for the isothermal problem and use the lubrication approximation to investigate the
steady flow of a thin rivulet of viscous fluid with prescribed volume flux draining
down a planar or slowly varying substrate that is either uniformly hotter or uniformly
colder than the surrounding atmosphere, when the surface tension of the fluid varies
linearly with temperature. In the course of this work we shall obtain the (implicit)
solution of the ordinary differential equation for the free-surface profile of the rivulet
that arises, and as a result we are able to analyse the behaviour of the rivulet for
arbitrarily strong thermocapillary effects.

2. Formulation
Consider the steady flow of a symmetric rivulet (of uniform width 2a and prescribed

volume flux Q) of an incompressible Newtonian fluid with uniform density ρ, viscosity
µ, specific heat c and thermal conductivity kth down a planar substrate inclined at
an angle α (0 < α < π) to the horizontal. The velocity u = (u, v, w), pressure p, and
temperature T of the fluid are governed by the mass conservation, Navier–Stokes
and energy equations

∇ · u = 0, (1)

ρ(u · ∇)u = −∇p+ µ∇2u+ ρg, (2)

ρc(u · ∇)T = kth∇2T , (3)

where g = g(sin α, 0,− cos α) is the acceleration due to gravity, referred to the Cartesian
coordinates Oxyz indicated in figure 1. At the solid substrate z = 0 the fluid velocity
is zero and the uniform temperature is prescribed:

u = 0, T = T0; (4)

on the free surface z = h(x, y) the appropriate boundary conditions are normal and
tangential stress balances, an energy balance and the kinematic condition, which take
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Figure 1. Geometry of the problem.

the form

n · T · n = −γκ, (5)

t · T · n = t · ∇γ, (6)

−kth∇T · n = αth(T − T∞), (7)

uhx + vhy = w. (8)

Here T denotes the stress tensor of the fluid, n and t are unit normal and tangential
vectors to the free surface, T0 is the prescribed uniform temperature of the plate, T∞
is the prescribed uniform temperature of the passive atmosphere above the rivulet, γ
is the surface tension, αth is the surface heat-transfer coefficient, κ is twice the mean
curvature of the free surface, and suffixes x and y denote derivatives. We take µ, ρ, c,
kth and αth to be constants, but we assume that the surface tension γ depends linearly
on temperature:

γ(T ) = γ0 − λ(T − T0), (9)

where λ = −dγ/dT is a positive constant and γ0 is the constant surface tension at
T = T0. The kinematic condition (8) may conveniently be rewritten in the form

ūx + v̄y = 0, (10)

where the local fluxes ū and v̄ are defined as

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz. (11)

At the edges of the rivulet y = ±a where h = 0 we assume that the contact angle
takes the prescribed constant value β, as shown in figure 1. The prescribed volume
flux of fluid down the substrate is given by

Q =

∫ a

−a

∫ h

0

u dz dy. (12)

Unlike the corresponding isothermal problem studied by Duffy & Moffatt (1995),
the present problem has no rectilinear-flow solution, since the imposed temperature
difference between the substrate and the surrounding atmosphere leads to a surface-
tension variation at the free surface of the fluid that inevitably drives a transverse
flow (in addition to the gravity-driven longitudinal flow down the substrate), and so
the flow is fully three-dimensional. We continue by considering a solution in which
all quantities are independent of x, so that, in particular, h = h(y). Moreover we shall
consider only solutions that are symmetric about y = 0 and smooth at y = 0, so that
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they satisfy

hy = 0, hyyy = 0 (13)

at y = 0; therefore hereafter we need consider the solution in 0 6 y 6 a only (with
the behaviour in −a 6 y 6 0 given by symmetry).

Equations (1)–(13) constitute a formidable problem on which little progress can be
made analytically in general; however, considerable progress can be made in the case
of a rivulet whose cross-section is slender (with, in particular, β � 1), and it is this
case that we consider from now on. We scale the system as follows:

y = ly∗, z = βlz∗, a = la∗, h = βlh∗,

u =
ρgβ2l2

µ
u∗, v =

ρgβ3l2

µ
v∗, w =

ρgβ4l2

µ
w∗, p = ρgβlp∗,

Q =
ρgβ3l4

µ
Q∗, γ = γ0γ

∗, T = T∞ + (T0 − T∞)T ∗,


(14)

where l = (γ0/ρg)1/2 is the capillary length. Then with superscript stars dropped, the
scaled governing equations at leading order in β are

vy + wz = 0, (15)

0 = sin α+ uzz, (16)

0 = −py + vzz, (17)

0 = −pz − cos α, (18)

Tzz = 0, (19)

v̄y = 0, (20)

with the boundary conditions

u = v = w = 0, T = 1 (21)

on z = 0,

−p = hyy, (22)

uz = 0, (23)

vz = − 1

∆C
(Ty + hyTz), (24)

Tz + BT = 0 (25)

on z = h,

h = 0, hy = −1 (26)

at y = a, and (13) at y = 0, where the non-dimensional thermocapillary number ∆C
and Biot number B are defined as

∆C =
ρgβ2l2

λ(T0 − T∞)
, B =

βlαth

kth

. (27)

Solving (18) subject to (22) on z = h we obtain

p = (h− z) cos α− hyy, (28)
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and solving (19) subject to the thermal boundary conditions (21) on z = 0 and (25)
on z = h gives

T = 1− Bz

1 + Bh
. (29)

The velocity is then found from (15)–(17), (21) on z = 0, and (23) and (24) on z = h
to be

u = 1
2
z(2h− z) sin α, (30)

v = −py
2
z(2h− z) +

Mhyz

(1 + Bh)2
, (31)

w =
pyy

6
z2 (3h− z) +

py

2
hyz

2 − Mz2

2(1 + Bh)2

(
hyy − 2Bh2

y

1 + Bh

)
, (32)

where M is an effective Marangoni number defined by

M =
B

∆C
=
λαth(T0 − T∞)

ρgβlkth

, (33)

so that M > 0 (< 0) when the substrate is hotter (colder) than the surrounding
atmosphere. Substituting (30) into (12) gives the volume flux

Q =
sin α

3

∫ a

−a
h3 dy. (34)

From the kinematic condition (20) we obtain[
−pyh

3

3
+

Mh2hy

2(1 + Bh)2

]
y

= 0, (35)

and substituting for p from (28), integrating once with respect to y and then using the
conditions (13) we obtain a third-order ordinary differential equation for h, namely

(hyy − h cos α)y +
3Mhy

2h(1 + Bh)2
= 0. (36)

In the limit B → 0 this becomes

(hyy − h cos α)y +
3Mhy

2h
= 0, (37)

which is of the same form as equation (5.5p) of Ehrhard & Davis (1991), derived by
them to describe the profile of a two-dimensional drop of fluid of prescribed area that
is spreading quasi-statically. We note from (36) or (37) and the boundary condition
(26) that for M 6= 0 the curvature of the free surface at the contact line y = a is
singular (with hyy ∼ − 3

2
M log h as h→ 0), and that

h ∼ (a− y)− 3
4
M(a− y)2 log (a− y) (38)

as y → a.
The discussion thus far has been restricted to flow down a planar substrate, but

as Duffy & Moffatt (1995) describe, the analysis also provides the leading-order
approximation to the local behaviour of a rivulet of non-uniform width draining
down a non-planar cylindrical substrate (with horizontal generators), with α now
representing the local inclination of the substrate to the horizontal, provided that α
varies sufficiently slowly (specifically, provided that the curvatures of the substrate
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and the rivulet profile in the downstream direction are much less than the transverse
curvature of the rivulet). Thus results derived in subsequent sections may be inter-
preted as describing, for example, a slowly varying rivulet draining azimuthally from
the top (α = 0) to the bottom (α = π) of a large horizontal circular cylinder. It is
known (Wilson & Duffy 1998) that in the isothermal case M = 0 there are multiple
branches of solutions in 1

2
π < α 6 π, but that of these only the one that connects

smoothly with the solution in 0 6 α < 1
2
π is physically realizable; we shall henceforth

concern ourselves with only the latter type of solution.

3. An implicit solution and its properties
Integrating (36) twice with respect to y we find

h2
y − h2 cos α+ 3Mh

[
log

(
h

1 + Bh

)
− 1

]
= Ch+ D, (39)

where C and D are constants of integration. Imposing the boundary condition (13a)
in the form

hy = 0 when h = hm, (40)

where hm = h(0) denotes the (unknown) height at y = 0, and boundary conditions
(26) in the form

hy = −1 when h = 0, (41)

we obtain

h2
y = f(h), (42)

where we have defined

f(h) =

(
1− h

hm

)
(1− hhm cos α)− 3Mh log

(
h (1 + Bhm)

hm (1 + Bh)

)
, (43)

which must be non-negative in a physically relevant interval containing h = 0 and
h = hm. We show in Appendix A that the solution h = h(y) of (36) subject to (13a) at
y = 0 and (26) at y = a has a single stationary point, a maximum h = hm at y = 0,
and so the cross-sectional profile of the rivulet decreases monotonically from h = hm
at y = 0 to h = 0 at y = a. The solution of (42) may therefore be written in the
implicit form

y =

∫ hm

h

1[
f(h̃)

]1/2 dh̃ (44)

for 0 6 y 6 a, where the flux Q and semi-width a are given by

Q =
2 sin α

3

∫ hm

0

h̃3[
f(h̃)

]1/2 dh̃, (45)

a =

∫ hm

0

1[
f(h̃)

]1/2 dh̃. (46)

One can also show that when M > 0 the function h(y) always has a single point of
inflection in y > 0, so that the cross-sectional profile steepens away from the contact
line before flattening at the middle. On the other hand when M < 0 the profile may
have up to two points of inflection in y > 0 when 1

2
π < α 6 π, but has none when

0 6 α 6 1
2
π. In the isothermal case M = 0 the profile may have at most one point of

inflection in y > 0 when 1
2
π < α 6 π, but has none when 0 6 α 6 1

2
π.
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Figure 2. Numerically calculated solutions for (a) hm and (b) a, plotted as functions of α/π for a
range of values of Q when M = 1. The dashed curves show the leading-order solutions given in
(66) and (67) for hm and (69) for a in the limit Q→∞.

With Q prescribed, equation (45) is an algebraic equation determining hm, and then
equation (46) determines a explicitly, and (44) determines the profile h(y) implicitly.
This procedure was implemented numerically using the computer algebra package
Mathematica, and analytically in appropriate asymptotic limits. In the remainder of
this paper we shall describe in detail the properties of this implicit solution; in practice
the parameter B is often small, and so for simplicity we shall largely restrict our
attention to the adiabatic case B = 0 (see, for example, Tan et al. 1990 and Smith 1995).

It is convenient in the subsequent analytical calculations to write h̃ = thm in
(43)–(46) to obtain

y = hm

∫ 1

h/hm

1

[F(t)]1/2
dt, (47)

Q =
2h4

m sin α

3

∫ 1

0

t3

[F(t)]1/2
dt, (48)

a = hm

∫ 1

0

1

[F(t)]1/2
dt, (49)
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Figure 3. As for figure 2 except that M = −0.6. The dashed curve shows the leading-order
solution on the middle branch in the limit Q→∞.

where we define F(t) by F(t) = f(h̃), that is,

F(t) = (1− t)(1− th2
m cos α)− 3Mhmt log

(
t(1 + Bhm)

1 + Bhmt

)
. (50)

Moreover, with (48) equation (49) may be written

a =
3Q

2h3
m sin α

+ hm

∫ 1

0

1− t3
[F(t)]1/2

dt. (51)

In general the integrands in (47)–(49) are finite except when t→ 1, and from (50) we
have

F(t) = C1(1− t) + C2(1− t)2 + O(1− t)3 (52)

as t→ 1, where

C1 = 1− h2
m cos α+

3Mhm

1 + Bhm
, C2 = h2

m cos α− 3Mhm

2(1 + Bhm)2
. (53)

Since F must be positive as t → 1− (h̃ → h−m) we have C1 > 0, and we note that the
singularities in (47)–(49) as t→ 1 are integrable if C1 > 0.
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Figure 4. As for figure 2 except that M = −1. Note that in this case plots of hm for Q > 0.1 are
indistinguishable (at this scale) from that for Q = 0.1.

Examples of the variation of hm and a with α, obtained from (48)–(50), are shown
in figures 2, 3 and 4 for the cases M = 1, M = −0.6 and M = −1 respectively, for a
range of values of Q, and in figures 5 and 6 for the case Q = 1 for a range of positive
and negative values of M respectively.

It is found that for M > 0 and M 6 − 2
3

there exists a solution in which hm and a

are single-valued functions of α for any Q, but that for − 2
3
< M < 0 there exists a

critical flux Qc such that hm and a are single-valued for Q 6 Qc but are triple-valued
over some interval α1 6 α 6 α2 for Q > Qc; here α1 >

1
2
π and α0 < α2 < π, where

α0 = cos−1(−9M2/4) (so that 1
2
π < α0 < π, α0 → 1

2
π as M → 0− and α0 → π as

M → − 2
3

+
). The form of hm as a function of α in the case − 2

3
< M < 0 is sketched

in figure 7, showing the ‘middle’ branch in α1 6 α 6 α2 connecting the ‘lower’ branch
in 0 6 α 6 α2 and the ‘upper’ branch in α1 6 α 6 π; examples are shown in figure 3
(in which Qc ' 5.7).† The critical flux Qc is determined by the condition that there is
just one value of α in 1

2
π < α < π where dhm/dα → ∞ (and da/dα → ∞). Figure 8

† In figure 3 (a case satisfying − 2
3
< M < 0) some of the plots of both hm and a would appear

to have discontinuities in slope (corners) at certain points; in fact, on a finer scale it is seen that all
the curves shown are smooth, though with high curvature at the apparent corners.
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Figure 5. Numerically calculated solutions for (a) hm and (b) a, plotted as functions of α/π for a
range of positive values of M when Q = 1.

shows the variation of Qc with M̄ (= −M) in the relevant interval 0 < M̄ < 2
3
. We

find that Qc → ∞ as M̄ → 0+ and Qc → 0 as M̄ → 2
3

−
. In, for example, flow round

a large horizontal cylinder, the maximum height of the rivulet corresponding to the
solution in figure 7 would presumably ‘jump’ discontinuously between the lower and
upper branches when α passes through α1 or α2, and so the solutions on the middle
branch where dhm/dα < 0 would not be attained in practice; thus only discontinuous
solutions occur when Q > Qc for − 2

3
< M < 0. On the other hand in flow down a

plane inclined at an angle α satisfying α1 < α < α2 there are three possible solutions.
A stability analysis of the rivulet solutions obtained here is beyond the scope of
the present paper, but a preliminary (quasi-static) stability analysis indicates that
solutions on at least part of the middle branch are unstable; one might therefore
conjecture that the middle-branch solutions are unstable, and so would never be
observed in practice.

Figure 9 shows examples of the cross-sectional profile of the rivulet, given by (47),
for a range of values of α in the cases M = 1, M = −0.5 and M = −0.8, with Q = 1
in each case. For M = 1 the profiles shown are qualitatively similar to those given by
Duffy & Moffatt (1995) in the isothermal case M = 0. For M = −0.5 the profiles are
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Figure 6. Numerically calculated solutions for (a) hm and (b) a, plotted as functions of α/π for a
range of negative values of M when Q = 1.

rather flat when α < 1
2
π, except in a boundary layer near the contact line y = a, but

are much narrower and more peaked when α > 1
2
π. For M = −0.8 the profiles are

very flat for all α, except in a boundary layer near y = a.
All of the general features of the solutions shown in the figures are captured well

by appropriate asymptotic solutions, described below.

3.1. The limit α→ 0

For the integral in (48) to be real valued in the limit α → 0 the maximum height of
the rivulet hm must approach a finite value, hm0 say. However, if C1 6= 0 when α = 0
in (52) then the integral in (48) would be O(1) as α → 0, and so (48) could not be
satisfied. The only alternative is that C1 = 0 when α = 0, so that hm0 is given by

hm0 = 1
2

[
3M + (9M2 + 4)1/2

]
; (54)

this means that C2 = 1
2
(9M2 + 4)1/2hm0 > 0 and that the integral in (48) is divergent.

The expansion of the integrand in (48) for t→ 1 is non-uniform when 1− t = O(α2);
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Figure 7. Sketch of the form of hm as a function of α when − 2
3
< M < 0 and Q > Qc. The

angles α1 and α2 are where dhm/dα → ∞, and α0 = cos−1(−9M2/4). The dashed curve represents
the leading-order solution for hm in the limit Q→∞ in this case.
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Figure 8. The critical flux Qc plotted as a function of M̄ = −M in the relevant interval 0 < M̄ < 2

3
.

to determine subsequent terms in the expansion of hm we therefore decompose the
integral as the sum of integrals over the intervals [0, 1 − δ1] and [1 − δ1, 1], where
0 < α2 � δ1 � 1, and obtain asymptotic approximations to these integrals separately
(cf. Hinch 1991, p. 39). We thus find that

hm = hm0 +
h2
m0α

2

2(9M2 + 4)1/2
+ O(α4) (55)

as α→ 0. Also the integral in (51) is O(1) as α→ 0, and we have

a =
3Q

2h3
m0α

+ hm0

∫ 1

0

1− t3
[(1− t)(1− h2

m0t)− 3Mhm0t log t]1/2
dt+ O(α) (56)
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Figure 9. Transverse free-surface profiles for a range of values of α in the cases (a) M = 1,
(b) M = −0.5 and (c) M = −0.8, when Q = 1.

as α → 0, showing that whereas hm approaches the finite value hm0 in this limit, a
is unbounded. These results collapse to those of Duffy & Moffatt (1995) in the case
M = 0. Moreover (47) shows that the free-surface profile is flat, with h(y) ∼ hm0,
except in a boundary layer near y = a.

3.2. The limit α→ π

The behaviour of the solution in the limit α→ π is different in the two cases M > − 2
3

and M 6 − 2
3
.

If M > − 2
3

then in the limit α → π there is no real positive value of hm such that
C1 = 0, and so the integral in (48) is finite; this means that (48) can be satisfied only
if hm → ∞ as α → π, which in turn means that the expansions of the integrands in
(48) and (49) for t→ 0 are non-uniform when t = O(h−2

m ). Therefore, analogously to
the case α → 0 described in § 3.1, we treat each integral by decomposing it as a sum
of integrals over [0, δ2] and [δ2, 1], where 0 < h−2

m � δ2 � 1. We thus find that

hm =

(
24Q

5π(π− α)
)1/3

+

(
47

10
− 6 log 2

)
M + o(1), (57)

a = π− (2 + 3πM)

(
5π(π− α)

24Q

)1/3

+ o(π− α)1/3 (58)
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as α → π when M > − 2
3
, showing that whereas hm is unbounded in this limit,† a

approaches the finite value π. Again these results reduce to those of Duffy & Moffatt
(1995) in the case M = 0. Moreover from (47) the free-surface profile is given by

h(y) ∼ hm cos2 1
2
y (59)

(which satisfies h(a) = 0 and hy(a) = o(π− α)−1/3, consistent with (26)). Also we note
that in figure 6(b) the difference in sign of the slope of a at α = π between the cases
M = −0.1 and M = −0.5 is in agreement with (58), which predicts a change of sign
between M < −2/3π (' −0.2122) and M > −2/3π.

If M 6 − 2
3

then in the limit α → π we find that although there is still a solution
of the type (57)–(59) with hm unbounded there is also a solution in which hm remains
finite; in that case (48) can be satisfied only if C1 = 0, which determines hm at leading
order, and then a at leading order is obtained straightforwardly from (51). We thus
find, analogously to (55) and (56), that

hm = hmπ − h2
mπ(π− α)2

2(9M̄2 − 4)1/2
+ O(π− α)4, (60)

a =
3Q

2h3
mπ(π− α) + hmπ

∫ 1

0

1− t3
[(1− t)(1 + h2

mπt) + 3M̄hmπt log t]1/2
dt+ O(π− α) (61)

as α→ π when M̄ = −M > 2
3
, where

hmπ = 1
2

[
3M̄ − (9M̄2 − 4)1/2

]
. (62)

Equations (60)–(61) show that whereas hm approaches the finite value hmπ in this
limit, a is unbounded. Moreover (47) shows that the free-surface profile is flat, with
h(y) ∼ hmπ, except in a boundary layer near y = a.

3.3. The limit Q→ 0

In the limit of small flux Q → 0 equation (48) can be satisfied only if the outer
solution for hm (valid away from α = 0 and α = π) satisfies hm → 0. It is then found
that the integrals in (48) and (49) are dominated by ‘global contributions’ (Hinch
1991, p. 37) for small hm; we thus find that

hm =
1

2

(
105Q

4 sin α

)1/4

+
M

32
(840 log 2− 533)

(
3Q

35 sin α

)1/2

+ o(Q1/2), (63)

a =

(
105Q

4 sin α

)1/4

− 113M

16

(
3Q

35 sin α

)1/2

+ o(Q1/2) (64)

as Q → 0, so that both hm and a are O(Q1/4). Moreover from (47) the free-surface
profile is given by

h(y) ∼ hm
(

1− y2

a2

)
. (65)

Comparison with (55)–(61) shows that the solution (63)–(65) fails near α = 0 and
α = π where there are boundary layers of width O(Q), within which both hm and a
are O(1) at leading order in Q; however, the (implicit) expressions for hm and a at

† Of course, the singular nature of hm as α→ π means that the lubrication approximation breaks
down in this limit; in the case of flow round a cylinder, an alternative approach would therefore be
needed to describe the flow in the neighbourhood of the bottom of the cylinder α = π.
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leading order in the boundary layers are only slightly simpler than the general results
(48) and (49), so we omit the details for the sake of brevity.

These results are valid, in particular, in the case M = 0 considered by Duffy &
Moffatt (1995), who did not investigate the limit Q→ 0.

3.4. The limit Q→∞
The behaviour of the solution in the limit of large flux Q → ∞ is different in the
three cases M > 0, − 2

3
< M < 0 and M 6 − 2

3
.

In the case M > 0 the outer solution (valid away from α = 1
2
π) has different forms

in the intervals 0 6 α < 1
2
π and 1

2
π < α 6 π.

When 0 6 α < 1
2
π the maximum height hm must be finite for the integral in (48) to

be real, but then (48) can be satisfied only if C1 = 0. This determines hm at leading
order, and a at leading order is then obtained straightforwardly from (51); we thus
find that

hm ∼ H, a ∼ 3Q

2H3 sin α
(66)

as Q→∞ when 0 6 α < 1
2
π, where

H =
3M + (9M2 + 4 cos α)1/2

2 cos α
, (67)

showing that whereas hm approaches the finite value H in this limit, a is unbounded.
As α → 1

2
π− we have H ∼ 3M/( 1

2
π − α) if M > 0 and H ∼ ( 1

2
π − α)−1/2 if M = 0.

Moreover (47) shows that the free-surface profile is flat, with h(y) ∼ H , except in a
boundary layer near y = a. The leading-order solution for hm given by (66) and (67)
is shown as the dashed curve in figure 2(a). We note that (66) and (67) agree with
(54)–(56) at leading order in the limit α→ 0.

When 1
2
π < α 6 π we have C1 > 0 for all hm, and so the integral in (48) is finite;

this means that (48) can be satisfied only if hm → ∞ as Q→ ∞, which in turn means
that the expansions of the integrands in (48) and (49) for t → 0 are non-uniform
when t = O(h−2

m ). We therefore evaluate each integral via the procedure described in
§ 3.2; we thus find that

hm =

(
24QG

5π sin α

)1/3

+

(
47

10
− 6 log 2

)
M

G2
+ o(1), (68)

a =
π

G
−
(

2G+ 3πM

G3

)(
5π sin α

24QG

)1/3

+ o(Q−1/3) (69)

as Q → ∞ when 1
2
π < α 6 π (where G = | cos α|1/2), showing that whereas hm is

unbounded in this limit, a approaches the finite value π/G. Moreover from (47) the
free-surface profile is given by

h(y) ∼ hm cos2 1
2
Gy (70)

(which satisfies h(a) = 0 and hy(a) = o(Q1/3), consistent with (26)). The leading-order
solution for a in (69) is shown as the dashed curve in figure 2(b). Also we note that
(68)–(70) agree with (57)–(59) in the limit α→ π.

Clearly the solution (66)–(70) fails near α = 1
2
π where there is a boundary layer

across which hm and a change from their O(1) and O(Q) values in 0 6 α < 1
2
π to

their O(Q1/3) and O(1) values in 1
2
π < α 6 π. The nature of this layer depends on
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the size of M. When M = O(1) the layer has thickness O(Q−2/7), and within it hm is
O(Q2/7) and a is O(Q1/7). When M = 0, or more generally when M = o(Q−1/4), the
layer has thickness O(Q−1/2), and within it both hm and a are O(Q1/4). Again we omit
the details for the sake of brevity.

These results are valid, in particular, in the case M = 0 considered by Duffy &
Moffatt (1995), who did not investigate the limit Q→∞.

In the case M 6 − 2
3

we find that in the limit Q → ∞ the leading-order solutions
for hm and a are given by (66) and (67) across the entire interval 0 < α < π (see
figure 4); in particular we have H → − 1

3
M as α → 1

2
π when M < 0. Also we note

that (66) and (67) agree with (60)–(62) at leading order in the limit α→ π.
In the intermediate case − 2

3
< M < 0 the solutions hm and a are triple-valued over

the interval α1 6 α 6 α2 when Q→ ∞, with α1 → 1
2
π and α2 → α0 = cos−1(−9M2/4).

We find that the leading-order solutions for hm and a are given by (66) and (67) on the
lower branch (0 6 α 6 α0) and by (68) and (69) on the upper branch (1

2
π < α < π); see

figures 3 and 7. On the middle branch (1
2
π < α 6 α0) the integral in (48) is dominated

by a contribution from a double zero t = t0 6= 1 of F(t), so that F(t0) = 0 and
F ′(t0) = 0, and therefore F(t0)− t0F ′(t0) = 0. The latter has relevant root t0 = H/hm
(where H is given by (67)), and so hm at leading order in the limit Q → ∞ on the
middle branch is the relevant solution of the equation F(H/hm) = 0; this is shown
as the dashed curve in figure 3(a), lying in the interval 1

2
π < α 6 α0 ' 0.8005π for

M = −0.6.

3.5. The limit M → 0

The solution in the limit of weak heating or cooling M → 0 is perhaps most easily
obtained directly from the differential equation (37) and the boundary and flux
conditions (rather than from the implicit solution (43)−(46)) by expanding h, hm and
a in powers of M in the form

h = h0 +Mh1 +O(M2), hm = hm0 +Mhm1 +O(M2), a = a0 +Ma1 +O(M2), (71)

and solving the problem that emerges at each order in M. Details of this (rather
lengthy) calculation are relegated to Appendix B, in which it is shown that the results
of Duffy & Moffatt (1995) for the isothermal case are recovered at leading order,
and in which the O(M) terms in (71) are derived. Figure 10 shows the variation of
hm1 and a1 as functions of α for a range of values of Q, and in particular shows that
hm1 > 0 and a1 < 0. The behaviour of the first-order solution in the limits α → 0,
α → π, Q → 0 and Q → ∞ is given by the appropriate expansions of the relevant
results in §§ 3.1–3.4 and so need not be reiterated here.

3.6. The limit M →∞
In the limit of strong heating M → ∞ equation (48) can be satisfied only if the
outer solution for hm (valid away from α = 0 and α = π) satisfies hm → ∞ and
hm = o(M). Then the integrals in (48) and (49) are dominated by global contributions
with integrands t5/2(−3Mhm log t)−1/2 and (−3Mhmt log t)−1/2; we thus find that

hm ∼
(

189Q2M

8π sin2 α

)1/7

, a ∼
(

4
√

7π3Q

9M3 sin α

)1/7

(72)

as M →∞, showing that hm →∞ and a→ 0 in this limit, that is, the rivulet becomes
deep and narrow (see figure 5). Moreover (47) shows that the free-surface profile is
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given by

h(y) ∼ hm exp

{
−2
[
erf−1

(y
a

)]2
}

(73)

(where erf−1 denotes the inverse of the error function); this satisfies the boundary
conditions (13a) and (26a) identically, and gives hy(a) = o(M1/7), consistent with
(26b). The solution (73) is analogous to the solution given by Ehrhard & Davis (1991,
Appendix) for the steady profile of a two-dimensional drop in the case when gravity
is negligible and the contact angle is zero.

Comparison of (72) with (55)–(58) shows that this solution fails near α = 0 and
α = π where there are boundary layers of thickness O(M−3), within which hm is O(M)
and a is O(1). Again we omit the details for the sake of brevity.

3.7. The limit M → −∞
In the limit of strong cooling M̄ = −M → ∞ equation (48) can be satisfied only
if hm = O(M̄−1) and C1 = 0 in (52), giving hm ∼ (3M̄)−1; then (51) gives a ∼
81QM̄3/2 sin α. In fact, writing hm = H − δ, where H is given by (67) and 0 < δ � H ,
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we find that the integral in (48) is dominated by a global contribution with integrand
t3[3M̄δ(1− t)]−1/2, and that the expression for a in (51) is dominated by the first term;
thus

hm ∼ H −
(

64 sin α

105Q

)2
1

(3M̄)9
, a ∼ 3Q

2H3 sin α
(74)

as M̄ = −M → ∞. Since H ∼ (3M̄)−1, equation (74) shows that hm → 0 and a → ∞
in this limit, that is, the rivulet becomes shallow and wide (see figure 6); also hm
coincides with H up to O(M̄−9). Moreover (47) shows that the free-surface profile is
flat, with h(y) ∼ H , except in a boundary layer near y = a.

3.8. Comparison between numerical and asymptotic results

Detailed comparisons show that in general the asymptotic solutions given above can
provide a very accurate representation of the exact (numerical) solutions obtained
directly from (47)–(50). For example, for M = 1 the small-Q asymptotic solution
for hm would be virtually indistinguishable from the exact solution in figure 2(a)
for Q = 0.1, and for M = −1 the large-Q asymptotic solution for hm would be
indistinguishable from the exact solution in figure 4(a) even for Q as small as Q = 0.1.
(It is for this reason that the solutions are plotted for only relatively small values of
Q in figure 4: the solutions hm for larger values of Q would be indistinguishable from
that for Q = 0.1.) Similarly for Q = 1 the small-M and large-positive-M asymptotic
solutions for hm would be indistinguishable from the exact solutions in figure 5(a) for
M = 0.1 and M = 10 respectively, and the small-M and large-negative-M asymptotic
solutions for hm would be indistinguishable from the exact solutions in figure 6(a) for
M = −0.1 and M = −1 respectively.

4. The transverse flow
As we have already seen in § 2, the thermocapillary effect drives a transverse flow

(absent in the isothermal case), so that overall the fluid particles spiral down the
rivulet in helical vortices. Using (31) and (32) with p, hyyyy and hyyy substituted from
(28) and (36) we may write the transverse velocity components v and w as

v =
Mhyz(3z − 2h)

4h(1 + Bh)2
, (75)

w =
Mz2

4h2(1 + Bh)3

[
h(1 + Bh)(h− z)hyy + h2

y

(
z + Bh(3z − 2h)

)]
. (76)

We consider a projection of this flow onto the transverse (y, z)-plane, in which we
may define a ‘stream function’ ψ by v = −ψz and w = ψy , with ψ = 0 on z = 0, so
that

ψ(y, z) =
Mhyz

2(h− z)
4h(1 + Bh)2

. (77)

Evidently ψ = 0 on z = 0, on z = h and on the symmetry axis y = 0. If M > 0
then ψ 6 0 in 0 6 y 6 a (since hy 6 0 there), and conversely if M < 0 then ψ > 0 in
0 6 y 6 a. Furthermore if M = 0 then ψ = 0 and v = w = 0, confirming the absence
of a transverse flow in the isothermal problem.

At any ‘stagnation points’ of the transverse flow we have v = w = 0, which lead
either to y = 0, z = hm (a stagnation saddle point at the ‘apex’ of the rivulet) or to

z = 2
3
h, h(1 + Bh)hyy + 2h2

y = 0. (78)
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From (42) we may substitute for h2
y and hyy in terms of h into (78) to obtain an

algebraic equation for h, namely h(1 + Bh)f′(h) + 4f(h) = 0, that is,

2Bhmh
3 cos α+ [6hm cos α− B(1 + h2

m cos α)]h2 − 5(1 + h2
m cos α)h

−3Mhmh+ 4hm − 3Mhmh(5 + Bh) log

(
h(1 + Bhm)

hm(1 + Bh)

)
= 0. (79)

If this equation has a solution h = hs in the interval 0 < hs < hm, then there is a
stagnation point in 0 < y < a, at (ys, zs) say, where

zs = 2
3
hs, ys =

∫ hm

hs

dh̃

[f(h̃)]1/2
(0 < ys < a). (80)

When B = 0 one can show that, except in the case when − 2
3
< M < 0 and

−225M2/96< cos α < 0, equation (79) has a unique solution h = hs in 0 < hs < hm.
Thus in the transverse (y, z)-plane the streamlines in y > 0 are closed curves, and the
flow comprises a single closed eddy, with all particles circulating round the stagnation
point (ys, zs). In flow down an inclined plane the time τ taken by particles to complete
one circuit of the eddy varies from τ = 0 (for a particle at the stagnation point
(ys, zs)) to τ→∞ (for a particle on the bounding streamline ψ = 0). In flow down
a slowly varying substrate a somewhat similar statement concerning particle travel
times is expected to be valid, but, of course, the eddy in which any particular particle
moves will, in general, be different from one station α to another. When − 2

3
< M < 0

and −225M2/96 < cos α < 0 there are cases when (79) has three solutions h = hs in
0 < hs < hm, so there are three stagnation points in 0 < y < a, namely a stagnation
saddle point between two ‘elliptic’ stagnation points, all lying on the curve z = 2

3
h.

Thus in the transverse (y, z)-plane the streamlines in y > 0 are again closed curves,
but the flow comprises two ‘internal’ eddies (circulating fluid bounded by the ‘saddle
connections’) which in turn are surrounded by circulating fluid. These cases can occur
both when Q 6 Qc (relevant to the flow of a continuous rivulet round a large cylinder)
and when Q > Qc with hm lying on the middle or upper branches.

Examples of the transverse streamline patterns are shown for various cases in
figures 11–13. For M > 0 the free-surface temperature is greater near the contact line
y = a than it is near the symmetry axis y = 0, so the surface tension is stronger near
y = 0 than it is near y = a; this drives a motion in which particles near the free
surface z = h(y) move towards y = 0, and so particles near the substrate z = 0 move
towards y = a, that is, the circulation in y > 0 is anticlockwise in figures with M > 0.
For increasing M (that is, for stronger heating) a stronger transverse flow is generated,
and the rivulet becomes narrower and deeper, as shown in figure 5. For M < 0 the
situation is reversed, that is, the transverse circulation in y > 0 is clockwise, and the
rivulet becomes shallower and wider with increasing |M|, as shown in figure 6.

From (77) any streamline ψ = constant may be expressed explicitly (in terms of
the known function h(y)) by

z = 1
3
h

[
1 + 2 cos

{
1
3
π± 1

3
cos−1

(
−1− 54(1 + Bh)2ψ

Mh2[f(h)]1/2

)}]
, (81)

the ± sign here representing the ‘lower’ and ‘upper’ arcs of the closed streamline,
which meet ‘vertically’ on the curve z = 2

3
h, at points where

−Mh2[f(h)]1/2

27(1 + Bh)2
= ψ. (82)
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Figure 11. Streamlines of the transverse flow at α = 1
2
π in the cases (a) Q = 1, M = 0.01, (b) Q = 1,

M = 3, and (c) Q = 0.01, M = −1. The curves z = 2
3
h (which the streamlines cross ‘vertically’) are

also shown. In cases (a) and (b) the dashed curves show the leading-order composite streamlines in
the limits M → 0 and M →∞ respectively.

In particular at any stagnation point (ys, zs) we have ψ = ψs, where

ψs = −Mh2
s [f(hs)]

1/2

27(1 + Bhs)2
. (83)

The quantity ψs (or, in cases where there are three stagnation points in 0 < y < a,
the largest of the three values ψs) may be regarded as a measure of flux circulating
in the transverse plane; the complete family of streamlines in 0 6 y 6 a is obtained
by taking ψs 6 ψ 6 0 (for M > 0) or 0 6 ψ 6 ψs (for M < 0) in (81).

In the limit M → 0 the stream function ψ takes the form

ψ = ψ0 +Mψ1 + O(M2), (84)

with ψ0 = 0 and

ψ1 =
h0yz

2(h0 − z)
4h0(1 + Bh0)2

, (85)

where h0 is given by (B 3) in Appendix B. From (78) the position of the stagnation
point in the case B = 0 is given at leading order by

ys =



1

G
cosh−1

[
1
6

{
coshGa0 + (24 + cosh2 Ga0)

1/2
}]

if 0 6 α < 1
2
π,

a0√
5

if α = 1
2
π,

1

G
cos−1

[
1
6

{
cosGa0 + (24 + cos2 Ga0)

1/2
}]

if 1
2
π < α 6 π,

(86)
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Figure 12. Streamlines of the transverse flow in the case M = −0.5 and Q = 14 (< Qc ' 17.0), at
(a) α = 2.181, (b) α = 2.182, and (c) α = 2.1842. The curves z = 2

3
h (which the streamlines cross

‘vertically’) are also shown.

zs =



5 coshGa0 − (24 + cosh2 Ga0)
1/2

9G sinhGa0

if 0 6 α < 1
2
π,

4a0

15
if α = 1

2
π,

−5 cosGa0 + (24 + cos2 Ga0)
1/2

9G sinGa0

if 1
2
π < α 6 π,

(87)

where again G = | cos α|1/2. In particular zs/hm → 4
9

and ys ∼ a0 − log 3 (with hm → 1
and a0 → ∞) as α → 0; also zs/hm → 5

9
and ys → cos−1 2

3
' 0.8411 ' 0.2677a0 (with

hm →∞ and a0 → π) as α→ π.
In the limit M →∞ the stream function ψ and the position (ys, zs) of the stagnation

point are given at leading order by substituting the leading-order expression (73) for
h into (77) and (78) respectively; when B = 0 the latter leads to

ys ∼ erf

(
1√
10

)
a(0) ' 0.3453a(0), zs ∼ 2

3
e−1/5h(0)

m ' 0.5458h(0)
m , (88)

where h(0)
m and a(0) are the leading-order outer solutions for hm and a given in (72).

In the limit M → −∞ we find at leading order that ψ = 0 except in the boundary
layer near y = a; thus fluid particles in the ‘bulk’ of the rivulet essentially undergo a
local rectilinear flow, and the transverse flow is confined to the boundary layer.

Figure 11 shows examples of the streamline patterns of the transverse flow at
α = 1

2
π (in which case there is only ever one eddy in 0 < y < a). Figures 11(a) and

11(b) are for the cases M = 0.01 and M = 3, with Q = 1 in both. For comparison the
leading-order composite streamlines in the limits M → 0 and M →∞, obtained from
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Figure 13. Streamlines of the transverse flow in the case α = 2.072, M = −0.5 and Q = 70
(> Qc ' 17.0), showing a solution on the upper branch, with hm = 3.3289. Note that in this figure
the streamlines are not plotted at equal intervals in ψ. The curve z = 2

3
h (which the streamlines

cross ‘vertically’) is also shown.

the above asymptotic results, are also shown (as the dashed curves); the agreement is
seen to be very good in both cases. Figure 11(c) is for the case M = −1 and Q = 0.01;
in this case the free surface is essentially flat except in a boundary layer near y = a,
and the transverse flow is confined to the boundary layer.

Figure 12 gives examples of the streamline patterns in the case M = −0.5 and
Q = 14 (< Qc ' 17.0); it is seen how, even though the free-surface profile is
qualitatively the same in all cases, the flow changes rather rapidly with α, from a
case at α = 2.181 with a single eddy near the right of the rivulet, through a case
at α = 2.182 with two ‘internal’ eddies, to one at α = 2.1842 with a single eddy
considerably nearer to the centre of the rivulet. Since Q < Qc in figure 12, such a
succession of transverse flows could occur in flow of a continuous rivulet round a large
cylinder. Specifically, for sufficiently small α there is only one stagnation point, but as
α increases through a critical value (lying in 1

2
π < α < cos−1(−255M2/96) ' 2.297) a

pair of stagnation points is ‘born’, giving three in total; then as α increases through a
second (larger) critical value two of these stagnation points coalesce and ‘annihilate’
each other, leaving just one.

Figure 13 gives an example of the streamline pattern in a case with Q > Qc, namely
α = 2.072, M = −0.5 and Q = 70 (> Qc ' 17.0). The figure shows a solution on the
upper branch, with hm = 3.3289; there is a very similar solution on the middle branch,
with hm = 3.2088. In both cases there are three stagnation points in 0 < y < a, with
two ‘internal’ eddies. In addition there is a solution on the lower branch with a single
stagnation point in 0 < y < a. Again it is unlikely that the middle-branch solution is
realizable in practice.

5. Conclusions
We have used the lubrication approximation to investigate the steady flow of a

thin rivulet of viscous fluid with prescribed volume flux draining down a planar or
slowly varying substrate that is either uniformly hotter or uniformly colder than the
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surrounding atmosphere, when the surface tension of the fluid varies linearly with
temperature. Utilizing the (implicit) solution of the governing ordinary differential
equation that emerges, we undertook a comprehensive asymptotic and numerical
analysis of the flow, including a detailed description of the different forms that the
cross-sectional profile of the rivulet may take. In particular, it was shown that the
variation in surface tension drives a transverse flow that causes the fluid particles to
spiral down the rivulet in helical vortices. In general the transverse flow in 0 < y < a
has either one stagnation point (around which all the fluid circulates) or three
stagnation points (with two ‘internal’ eddies surrounded by circulating fluid). Also
it was found that a single continuous rivulet can run from the top to the bottom
of a large horizontal circular cylinder provided that the cylinder is either warmer
(M > 0) or significantly cooler (M 6 − 2

3
) than the surrounding atmosphere, but if it

is only slightly cooler (− 2
3
< M < 0) then a continuous rivulet is possible only for a

sufficiently small flux (Q 6 Qc), though a rivulet with a discontinuity in the free surface
is possible for larger values of the flux (Q > Qc). Moreover, near the top of the cylinder
the rivulet has finite depth but infinite width, whereas near the bottom of the cylinder it
has finite width and infinite depth if the cylinder is heated or slightly cooled (M > − 2

3
),

but has infinite width and finite depth if the cylinder is significantly cooled (M 6 − 2
3
).

In practice such marked differences in the width and depth of the rivulet could
dramatically affect the transfer of heat between the substrate and the atmosphere.

The first author (D.H.) wishes to thank the Engineering and Physical Sciences
Research Council for financial support via a studentship during the course of the
present work.

Appendix A. The form of the free-surface profile h(y)

In this appendix we prove that the rivulet profile h(y) has a single stationary point,
a maximum at y = 0. The proof given here (which is shorter and more elegant
than the authors’ original proof) is due to Professor J. B. McLeod (University of
Pittsburgh).

The function h(y) satisfies the differential equation (36), namely

(hyy − h cos α)y +
3Mhy

2h(1 + Bh)2
= 0, (A 1)

with

hy(0) = 0, h(a) = 0, hy(a) = −1, (A 2)

and h > 0; also we define hm by hm = h(0). (Note that at this stage hm is not necessarily
the global maximum of h(y) in −a 6 y 6 a.) Let y = y0 (0 6 y0 < a) be the position
of the stationary point of h(y) that is nearest to y = a. Define the functions h1(ξ) and
h2(ξ) by h1(ξ) = h(y0 + ξ) and h2(ξ) = h(y0 − ξ). Then the hk(ξ) (k = 1, 2) satisfy

(hkξξ − hk cos α)ξ +
3Mhkξ

2hk(1 + Bhk)2
= 0, (A 3)

h1(0) = h2(0), h1ξ(0) = h2ξ(0) = 0, h1ξξ(0) = h2ξξ(0). (A 4)

The uniqueness of the solution of such an initial-value problem (at least up to the
singularity at y = a, where h = 0) means that h1(ξ) = h2(ξ). Thus h(y0 +ξ) = h(y0−ξ),
that is, h is symmetric about the stationary point y = y0, which must therefore be the
unique maximum hm of h(y) in −a 6 y 6 a, at y = y0 = 0.
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Appendix B. The solution in the limit M → 0

Here we obtain the asymptotic form of the solution h(y) to O(M) in the limit
M → 0. We achieve this by substituting the expansions (71) into the differential
equation (37), the boundary conditions (13a) at y = 0 and (26) at y = a, and the flux
condition (34), and solving the problem that emerges at each order in M. At leading
order this yields the third-order differential equation

(h0yy − h0 cos α)y = 0, (B 1)

to be integrated subject to the boundary conditions

h0y(0) = 0, h0(a0) = 0, h0y(a0) = −1. (B 2)

Hence h0 and a0 are the solutions of the isothermal problem studied by Duffy &
Moffatt (1995), namely

h0(y) =



coshGa0 − coshGy

G sinhGa0

if 0 6 α < 1
2
π,

a2
0 − y2

2a0

if α = 1
2
π,

cosGy − cosGa0

G sinGa0

if 1
2
π < α 6 π,

(B 3)

where again G = | cos α|1/2, and a0 is obtained from (34) as the solution of

Q =



sin α

9G4

(
15Ga0 coth3 Ga0 − 15 coth2 Ga0 − 9Ga0 cothGa0 + 4

)
if 0 6 α < 1

2
π,

4a4
0

105
if α = 1

2
π,

sin α

9G4

(− 15Ga0 cot3 Ga0 + 15 cot2 Ga0 − 9Ga0 cotGa0 + 4
)

if 1
2
π < α 6 π

(B 4)
(with hm0 found by setting y = 0 in h0). At first order in M equation (37) yields

(h1yy − h1 cos α)y +
3h0y

2h0

= 0, (B 5)

to be integrated subject to the boundary conditions

h1y(0) = 0, h1(a0) + a1h0y(a0) = 0, h1y(a0) + a1h0yy(a0) = 0, (B 6)

together with the first-order flux condition∫ a0

0

h2
0h1 dy = 0. (B 7)

We thus obtain (after considerable algebra)

h1 = a1 (1− Gh0 cothGa0) +
3

2G2
[Gy sinhGy coshGa0

+(s+ + s−) (2 log (sinhGa0)− Ga0 cothGa0)− s+ log s+ − s− log s−] , (B 8)

a1 = − 3

4G2

[
13 cothGa0 + (17 coth2 Ga0 − 5)Ga0 − 6I(5 coth2 Ga0 − 1)

15 coth3 Ga0 − 13 cothGa0 − 3Ga0(5 coth2 Ga0 − 1) cosech2 Ga0

]
(B 9)
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for 0 6 α < 1
2
π, where s± = sinh2[ 1

2
G(a0 ± y)] and I = I(Ga0) is given by

I =

∫ Ga0

0

ξ2 cosech2 ξ dξ. (B 10)

At α = 1
2
π we have

h1 =
a1(a

2
0 + y2)

2a2
0

+ 3
4

[
2(a2

0 + y2) log (2a0)− (a2
0 − y2)

−(a0 + y)2 log (a0 + y)− (a0 − y)2 log (a0 − y)
]
, (B 11)

a1 = −113a2
0

280
, (B 12)

which may be obtained by letting G → 0 in (B 8)–(B 10); moreover h1 and a1 for
1
2
π < α 6 π may be obtained by replacing G by iG in (B 8)–(B 10). In each case hm1 is

obtained by setting y = 0 in h1.
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